首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   35篇
  国内免费   157篇
地球物理   16篇
地质学   453篇
海洋学   1篇
综合类   1篇
自然地理   3篇
  2024年   4篇
  2023年   8篇
  2022年   18篇
  2021年   13篇
  2020年   29篇
  2019年   32篇
  2018年   16篇
  2017年   37篇
  2016年   19篇
  2015年   12篇
  2014年   17篇
  2013年   85篇
  2012年   26篇
  2011年   18篇
  2010年   8篇
  2009年   17篇
  2008年   18篇
  2007年   21篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有474条查询结果,搜索用时 15 毫秒
71.
The Neptunist‐Vulcanist controversy has distorted the reputations of both James Hutton and Abraham Gottlob Werner. Among English‐speaking geologists, Hutton is often presented as the Father of Modern Geology, whereas Werner's views are seen as ‘palpably absurd’. Both men made major contributions to geology, but they were men of their age, the second half of the eighteenth century, and remote in their general ideas from those current since Lyell's day in the mid‐nineteenth. Werner was greatly admired by some of his ablest contemporaries, and their admiration becomes inexplicable if we regard his views as ‘palpably absurd’. Historical research in the last few years, reviewed here, is able to show how Werner's views arose and why they seemed persuasive at the time. Some examples of Neptunist observations in Australia in the 1820's are given to show the application and later modification of the theory.  相似文献   
72.
The Ural Volcanics are a early Devonian, submarine, felsic lava-sill complex, exposed in the western central Lachlan Orogen, New South Wales. The Ural Volcanics and underlying Upper Silurian, deepwater, basin-fill sedimentary rocks make up the Rast Group. The Ural Range study area, centrally located in the Cargelligo 1:100 000 map sheet area, was mapped at 1:10 000 scale. Seventeen principal volcanic facies were identified in the study area, dominated by felsic coherent facies (rhyolite and dacite) and associated monomictic breccia and siltstone-matrix monomictic breccia facies. Subordinate volcaniclastic facies include the pumice-rich breccia facies association, rhyolite – dacite – siltstone breccia facies and fiamme – siltstone breccia facies. The sedimentary facies association includes mixed-provenance and non-volcanic sandstone to conglomerate, black mudstone, micaceous quartz sandstone and foliated mudstone. The succession was derived from at least two intrabasinal volcanic centres. One, in the north, was largely effusive and intrusive, building a lava – sill complex. Another, in the south, was effusive, intrusive and explosive, generating lavas and moderate-volume (~3 km3) pyroclastic facies. The presence of turbidites, marine fossils, very thick massive to graded volcaniclastic units and black mudstone, and the lack of large-scale cross-beds and erosional scours, provide evidence for deposition in a submarine environment below storm wave-base. The Ural Volcanics have potential for seafloor or sub-seafloor replacement massive sulfide deposits, although no massive sulfide prospects or related altered zones have yet been defined. Sparse, disseminated sulfides occur in sericite-altered, steeply dipping shear zones.  相似文献   
73.
Strain reversal of structural/stratigraphic profiles at different scales in the western Lachlan Orogen provides a perspective on original crustal thickness estimates, the former depositional basin width of the proto-western Lachlan Orogen, the original sedimentary-fan thickness, and the possible length extent of lower crust lost by subduction. Retrodeformation using strain-reversal techniques allows basin reconstruction giving an original width of the western Lachlan Orogen basin receptor of between 800 km (minimum) and ~1150 km (maximum), depending on the amount of stratal duplication allowed in the turbidites. Crude area balancing of the regional cross-section, adding in sectional volume lost by erosion and assuming strain compatibility between the upper and lower crust, suggests that the predeformation crustal thickness ranges between 15 km and ~21 km, with a lower crustal thickness (oceanic lithosphere) of ~9 km and a turbidite fan thickness of ~6 km (minimum) and ~12 km (maximum allowable), respectively. Disparity between the calculated fan thickness and that derived from measured stratigraphic sections adjusted for strain (~6 km) indicates that some form of crustal stacking must be important in structural thickening of the turbidite crustal component. By varying shortening due to fault stacking, mass balance dictates the mismatch of the upper crustal (uc) and lower crustal (lc) retrodeformed lengths, and therefore provides an estimate of lower crustal loss by subduction. End members range from: (i) a 12 km-thick fan without fault duplication, a basin width of ~800 km where uc = lc giving no lower crustal loss by subduction; to (ii) a ~6 km fan, requiring duplication by faulting, a basin of ~1150 km where uc > lc, and ~360 km of lower crust length (~30%) lost by subduction. This suggests that the total thickness of underplated igneous material in the western Lachlan Orogen is low, probably < ~2 km.  相似文献   
74.
Abstract

Potentially mineralised Paleozoic basement rocks in the southern Thomson Orogen region of southern Queensland and northern New South Wales are covered by varying thicknesses of Mesozoic to Cenozoic sediments. To assess cover thickness and methods for estimating depth to basement, we collected new airborne electromagnetic (AEM), seismic refraction, seismic reflection and audio-frequency magnetotelluric data and combined these with new depth to magnetic basement models from airborne magnetic line data and ground gravity data along selected transects. The results of these investigations over two borehole sites, GSQ Eulo 1 and GSQ Eulo 2, show that cover thickness can be reliably assessed to within the confidence limits of the various techniques, but that caveats exist regarding the application of each of the disciplines. These techniques are part of a rapid-deployment explorers’ toolbox of geophysical techniques that have been tested at two sites in Australia, the Stavely region of western Victoria, and now the southern Thomson Orogen in northern New South Wales and southern Queensland. The results shown here demonstrate that AEM and ground geophysics, and to a lesser extent depth to magnetic source modelling, can produce reliable results when applied to the common exploration problem of determining cover thickness. The results demonstrate that portable seismic systems, designed for geotechnical site investigations, are capable of imaging basement below 300 m of unlithified Eromanga Basin cover as refraction and reflection data. The results of all methods provide much information about the nature of the basement–cover interface and basement at borehole sites in the southern Thomson Orogen, in that the basement is usually weathered, the interface has paleotopography, and it can be recognised by its density, natural gamma, magnetic susceptibility and electrical conductivity contrasts.  相似文献   
75.
The basement rocks of the poorly understood Thomson Orogen are concealed by mid-Paleozoic to Upper Cretaceous intra-continental basins and direct information about the orogen is gleaned from sparse geological data. Constrained potential field forward modelling has been undertaken to highlight key features and resolve deeply sourced anomalies within the Thomson Orogen. The Thomson Orogen is characterised by long-wavelength and low-amplitude geophysical anomalies when compared with the northern and western Precambrian terranes of the Australian continent. Prominent NE- and NW-trending gravity anomalies reflect the fault architecture of the region. High-intensity Bouguer gravity anomalies correlate with shallow basement rocks. Bouguer gravity anomalies below –300 µm/s2 define the distribution of the Devonian Adavale Basin and associated troughs. The magnetic grid shows smooth textures, punctuated by short-wavelength, high-intensity anomalies that indicate magnetic contribution at different crustal levels. It is interpreted that meta-sedimentary basement rocks of the Thomson Orogen, intersected in several drill holes, are representative of a seismically non-reflective and non-magnetic upper basement. Short-wavelength, high-intensity magnetic source bodies and colocated negative Bouguer gravity responses are interpreted to represent shallow granitic intrusions. Long-wavelength magnetic anomalies are inferred to reflect the topography of a seismically reflective and magnetic lower basement. Potential field forward modelling indicates that the Thomson Orogen might be a single terrane. We interpret that the lower basement consists of attenuated Precambrian and mafic enriched continental crust, which differs from the oceanic crust of the Lachlan Orogen further south.  相似文献   
76.
新疆阿尔泰塔拉特铁铅锌矿床流体包裹体研究及矿床成因   总被引:4,自引:1,他引:3  
李登峰  张莉  郑义 《岩石学报》2013,29(1):178-190
塔拉特铁铅锌矿位于新疆阿尔泰造山带南缘的阿巴宫多金属成矿带,矿体赋存于克兰盆地下泥盆统康布铁堡组中,为一套海相中酸性火山岩-火山碎屑岩、陆源碎屑沉积岩-碳酸盐岩建造,脉状矿体受阿巴宫大断裂次级断裂控制.根据矿物组合和脉体穿插关系,塔拉特铁铅锌矿可分为4个成矿阶段:矽卡岩,氧化物,硫化物和碳酸盐阶段,后3个阶段均有石英共生.其中,硫化物(方铅矿-闪锌矿±磁黄铁矿±黄铜矿)阶段是铅锌成矿的主要阶段.不同阶段石英中广泛发育流体包裹体,可分为水溶液包裹体(W型)、纯CO2包裹体(PC型)、CO2-NaCl-H2O包裹体(C型)及含子矿物多相包裹体(S型)4类.冷热台显微测温和激光拉曼分析表明,氧化物阶段石英含有4种类型的包裹体,以W型为主,C型和S型包裹体次之,包裹体均一温度介于271~ 426℃,W型和C型盐度范围0.5%~22.4% NaCleqv,S型包裹体盐度30.5% ~40.6% NaCleqv;硫化物阶段的石英流体包裹体为W型、C型和PC型,均一温度为204 ~ 269℃,盐度介于0.2%~15.6% NaCleqv之间;碳酸盐阶段的矿物只含W型包裹体,均一温度集中在175~211℃之间,盐度为1.1% ~9.9% NaCleqv.利用C型包裹体对硫化物阶段成矿压力估算,得到107 ~ 171MPa,对应深度为4~6km.塔拉特铁铅锌矿初始成矿流体具有高温、高盐度、富CO2的特征,但碳酸盐阶段低盐度、贫CO2,流体不混溶和混合作用导致了成矿物质的沉淀.塔拉特铁铅锌矿的地质和成矿流体特征显示其为碰撞造山体制形成的矽卡岩型成矿系统.  相似文献   
77.
Abstract

Eight sets of stratigraphic layers and igneous rocks are the basis for the recognition of eight tectonic periods, TP1‐TP8, in the history of the New England and Yarrol Orogens from the Devonian to the opening of the Tasman Sea in the Late Cretaceous. The opening of the Tasman Sea caused the removal of an eastern section of the New England Orogen to form parts of the Lord Howe Rise and Norfolk Ridge. The Gwydir‐Calliope and Kuttung volcanic arc systems of TP1 and TP2 in the Devonian and Carboniferous were possibly W‐facing, and probably formed far to the NE of their present positions relative to the Lachlan Orogen. They moved SW as they developed, and in the latest Carboniferous or earliest Permian were cut obliquely by the Mooki Fault on which there was a dextral strike‐slip of about 500 km before the Kuttung volcanic arc became extinct. In the Late Carboniferous a narrow region on the E side of the Peel Fault was elevated to form the Campbell High which was intruded by the Bundarra Plutonic Suite and has probably remained elevated since then. Plutons of similar ages were intruded into a high to the E of the Bowen Basin (and the northern part of the Mooki Fault). The two highs and the intrusives in them divided the Yarrol Belt of the Yarrol Orogen from the Tamworth Belt of the New England Orogen, and the two belts have developed in different ways since the Visean. In Latest Carboniferous to Early Permian there was a major tectonic change and the Gympie‐Brook Street volcanic arc developed. The New England Orogen was in a back arc setting and broke into a mosaic of microplates, the relative motions between them being accompanied by deposition of diamictites, by metamorphism, by folding on W to NW trending axes, and by the intrusion of the Hillgrove Plutonic Suite. Further W, sediments of the Sydney, Gunnedah and Bowen basins were deposited above the Mooki Fault System and above the two segments of the Kuttung arc system that had been displaced along the Mooki Fault System.  相似文献   
78.
Rocks in the northern Leeuwin Complex of southwestern Australia preserve evidence of having formed during the breakup of Rodinia and the subsequent amalgamation of Gondwana. Detailed field mapping, structural investigation and U–Pb isotopic zircon analysis, using the Sensitive High‐mass Resolution Ion Microprobe (SHRIMP), have revealed that: (i) protoliths of pink granite gneiss and grey granodiorite gneiss crystallised at ca 750 Ma, coeval with breakup of western Rodinia; (ii) granulite/upper amphibolite facies metamorphism occurred at 522 ± 5 Ma, in the Early Cambrian, ~100 million years later than previous estimates and of identical age to estimates of the final amalgamation of Gondwana; and (iii) three major phases of ductile deformation occurred during or after this metamorphism and represent a progressive strain evolution from subvertical shortening (D1) to subhorizontal east‐west (D2) then north‐northwest‐south‐southeast (D3) contraction.  相似文献   
79.
Twenty‐four mineral separates from the Arunta Complex, four from the metamorphosed Heavitree Quartzite (White Range Quartzite), and one whole rock sample of metamorphosed Bitter Springs Formation, all from the western part of the White Range Nappe of the Arltunga Nappe Complex, and two samples from the autochthonous basement west of the nappe have been dated by the K‐Ar method. The samples from the basement rocks form two groups. Those in the southern or frontal part of the nappe are of Middle Proterozoic (Carpentarian) age (1660–1368 m.y.), determined on hornblende, biotite, and muscovite. In the northern or rear part of the nappe, all but one of the muscovite samples and two biotites are of Middle Silurian to Early Carboniferous age (431–345 m.y.); the remainder of the biotite dates range from 1775 to 548 m.y. (including the two samples from the autochthon), and two hornblendes gave dates of 1639 and 2132 m.y. respectively. All the muscovite samples from the Heavitree Quartzite, and the whole rock sample from the Bitter Springs Formation gave Early to Middle Carboniferous dates (358–322 m.y.). The findings support the identification of the White Range Quartzite as the metamorphosed part of the Heavitree Quartzite, which in turn supports the interpretation of the structure of the area as a large, basement‐cored fold nappe. In addition, they date the time of the Alice Springs Orogeny as pre‐Late Carboniferous, which agrees with fossil evidence from elsewhere in the area. The Alice Springs Orogeny was accompanied by widespread greenschist facies meta‐morphism that progressively metamorphosed the Heavitree Quartzite and Bitter Springs Formation, and retrogressively metamorphosed the Arunta Complex. However, the basement rocks in the southern part of the nappe escaped this metamorphism and retain a Middle Proterozoic age, thus dating the time of the Arunta Orogeny in this region as Carpentarian or older.  相似文献   
80.
This study provides new structural data that show that the Adaminaby Group is part of the Narooma accretionary complex and has been overprinted by HT/LP metamorphism associated with Middle Devonian Moruya Suite intrusions. The grade of metamorphism based on Kübler Indices is the same in the Wagonga and Adaminaby Groups at Batemans Bay inferring that these rocks were involved in the same accretionary event. White micas in slates of the Adaminaby Group record apparent K–Ar ages of 384.6 ± 7.9 Ma and 395.8 ± 8.1 Ma. These ages are believed to represent the age of Middle to Upper Devonian Buckenbowra Granodiorite. Kübler Index values indicate lower epizonal (greenschist facies) metamorphic conditions and are not influenced by heating in metamorphic aureoles of the plutons. All b cell lattice parameter values are characteristic of intermediate pressure facies conditions although they are lower in the metamorphic aureole of the Buckenbowra Granodiorite than in the country rock, defining two areas with dissimilar baric conditions. East of the Buckenbowra Granodiorite, b cell lattice parameter values outside the contact aureole (x = 9.033 Å; n = 8) indicate P = 4 kb, and assuming a temperature of 300°C, infer a depth of burial of approximately 15 km for these rocks with a geothermal gradient of 20°C/km. In the metamorphic aureole of the Buckenbowra Granodiorite, b cell lattice parameter values (x = 9.021 Å; n = 41) indicate P = 3.1 kb inferring exhumation of the Adaminaby Group rocks to a depth of approximately 11 km prior to intrusion. A geothermal gradient of 36°C/km operated in the aureole during intrusion. An extensional back-arc environment prevailed in the Adaminaby Group during the Middle to Upper Devonian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号